
• _-'_--
NAS_-q"M- 1.]L2990

/,;2,_- -,71- <_,P-.

The Use of Kirchhoff's Method in Jet Aeroacoustics

Final Report
NASA/NAG 1-tfl_ (3/1/94.9/15/94)

lcoo_

Principal Investigator:

Participant:

Technical Monitor:

Anastasios S. Lyrintzis
Associate Professor
School of Aeronautics and Astronautics

Purdue University
W. Lafayette, IN 47907-1282

Anthony Pilon

Aerospace Engineering& Mechanics
Universityof Minnesota

Minneapolis,MN 55455

Kristine Meadows (MS 128)

NASA Langley Research Center,
Hampton, VA 23665



Abstract

Supersonic jet aeroacoustics will be studied using computational techniques. In the

study, a Kirchhoffmethod is used to predict flow generated noise in the mid- and far-fields.

This type of method shows promise because it is based on surface integrals and not the

volume integrals found in traditional acoustic prediction methods. The Kirch.hoff method

is dependent on accurate prediction of flow variables in the near-field. Here, computational

fluid dynamics (CFD) programs are used for these predictions. Specifically, an e.nisting

large eddy simulation (LES) code will be modified for aeroacoustic applications. Issues

involved in the implementation of the Kirchhoff method as well as the coupling with the

CFD code will be discussed. Important physical noise parameters will be identified and

investigated in the study.



1. Introduction

The noise generated by supersonic jets is a major concern in the development of future

aircraft. Aerodynamically generated noise has been found to be a major contributor to jet

noise} Accurate prediction and reduction of this flow generated noise is essential.

This project is aimed at predicting the noise of supersonic jets with a new approach.

This method is based on the electro-magnetic theory presented by Kirchhoff in 1882. 2 In

this approach, the Kirchhoff method, mid- and far-field sound is predicted from flow quan-

tities on an arbitrary surface. For this prediction, a linear wave equation is assumed to be

valid outside the surface. Thus, the surface must enclose all hnear and non-linear sources

of sound, and any reflecting physical surfaces. The needed quantities on the Kirchhoff

surface can be determined in several different ways. Theoretical expressions, experimental

data, or computational fluid dynamics (CFD) methods can all be employed. For this study,

the combined CFD-Kirchhoff method is used. This requires judicious placement of the

Kirchhoff surface as well as a spatially and temporally accurate CFD code. These issues
are discussed further herein.

2. Jet Noise

As mentioned previously, aerodynamically generated noise is a major concern in the

development of future aircraft. A summary of subsonic and supersonic jet noise is given
in this section.

The earhest comprehensive work on sound generated by fluid motion was pres6nted

by Lighthill. a LighthiU noted that the total energy radiated outward as sound from an

unsteady flow is a small fraction of the flow's total kinetic ener_'. Approximating this

radiation may lead to an incorrect solution. Lighthill introduced his acoustic analogy to

overcome this difficulty. In the acoustic analogy, the entire unsteady flow field is replaced

by an equivalent volume distribution of acoustic sources. The sources may move, but the

surrounding fluid medium cannot. All unsteady fluid dynamics are included in the strength

and distribution of acoustic sources. Lighthill's equation can be derived by subtracting

the the divergence of the momentum equation from the time derivative of the continuity

equation. The resulting inhomogeneous wave equation is

02P a2_72p- 02Ti'i (2.1)
Ot 2 Oz iOx j

where Ti,j iS the Lighthill stress tensor

Ti,j -_ puiuj q- (p - pa 2) _i,j -- r'i,j (2.2)

Here ui are the cartesian velocity components, p is the density, p is the pressure, a the

ambient speed of sound, and ri,j is the viscous stress tensor. If the entire unsteady flow field

is approximated with acoustic sources, Lighthill's equation is exact, and has the following
solution for an unbounded flow

p(_,_) 1 /[ 1 02Ti,j]= 4_a-'----'_- ]:_- y_ OxiOxj dy
v

(2.3)



where _ is the source location, and a_ is the observer location. The brackets indicate

evaluation at the retarded time,

l -#l
=, (2.4)
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Several observations can be made from the solution to Lighthill's equation. First,

the double divergence of the stress tensor indicates quadrupole type radiation. This agrees

with the assumption that acoustically radiated energy is a small fraction of the flow kinetic

energy. Also, since quadrupoles are highly directional, the emitted sound will have a gear

deal of directivity. It is Mso important to note that the solution to Lighthill's equation

requires a volume inte_al, and that the entire unsteady flow field must be known to

calculate the acoustic sources. This is possible theoretically in cases of academic interest,

or if the field is determined experimentally or computationally. It is possible, however, to

make order of magnitude approximations to the terms in LighthiU's equation. In doing this

it can Be shown that for cold, subsonic jets, the acoustic intensity scales with the eighth

power of the jet velocity. 3 It is important to note here that, in his analysis, Lighthill omitted

the effects of density variations within the jet on sound generation. These variations

become important if the jet is heated, or if the Math number approaches or exceeds 13

In the shear layer of a jet most turbulence dynamics statistics change very slowly in the

downstream direction. This implies that locally the flow is in dynamic equilibrium. Statis-

tical mechanics then says that the large scale turbulent fluctuations (vortical structures)

can be represented by a superposition of normM modes of the system. For jet flows the nor-

mal modes are the instability waves which are calculated with the compressible Rayleigh

or Orr-Sommerfeld equations. Thus, it is meaningful in a statistical sense to represent the

large scale vortical structures as a superposition of instability waves. 1 Experiments have

shown that the noise generated by jets is due primarily to these large scale structures. In-

stability wave solutions have also been used as source predictions in the acoustic analogy

method. 5'6 Tam and others have also used matched asymptotic expansions with instability

wave solutions to extend the generated sound to the far-field.

Since the large scale turbulent structures are the dominant source of noise, the fine

grain turbulence can be modeled. The sound generated by the large turbulence structures

is then calculated directly. This approach was utilized by Mankbadi, et al. r This method

will also be used in the current study, and is discussed further herein.

If a supersonic jet is not perfectly expanded (operating at off-design conditions) a

shock cell structure will develop. It is possible for the large scale structures to interact

with the shocks in such a way as to set up an acoustic feedback system. This feedback

system allows the production of very high intensity sound to be propagated to the far field.

This "screech" phenomena is not yet well understood, and will be extensively investigated

in the current study.

It is relevant to discuss here the different characteristics of supersonic jet noise. The

first relevant characteristic is turbulent mixing noise. Turbulent mixing noise is due to

the mixing and interaction of large turbulent structures that occurs near the shear laver

of the jet. This noise is located at the low frequency end of the power spectrum. If the

jet is imperfectly expanded there may also be screech tones, as discussed above. The

screech tones are discrete frequency spikes in the power spectrum, located at the feedback



frequency, and possibly some harmonics. The screech tones are the lower bound for the

broadband shock associated noise. The broadband shock noise is due to the motion of

shocks and their interaction with turbulence. Higher frequencies are mainly due to fine
scales of turbulence.

3. Computational Aeroacoustics Methods

Several different methods are currently being used for computational aeroacoustic

predictions. A few of the more popular methods are described below.

1. ZighthiII'_ Acoustic Analogy. In the acoustic analogy 3 approach to aeroacoustics,

equation (2.3), or a similar equation, is solved numerically. The far-field pressure is then

calculated in a volume integral over the domain containing the sound sources. Several

researchers, most notably Lilly 5 and Ffowcs Williams and Hawkings, s have proposed mod-

ifications to Lighthill's original formula to account for the effects of sound-flow interaction,
and surfaces in the source domain.

The main difficulty involved in the acoustic analog" approach is the evaluation of the

quadrupole terms and the volume integral. If the source region is not compact, retention

of terms in time and space will lead to storage problems.

2. Full Flow-Field CFD. This method involves using a CFD method to calculate

pressure disturbances into the far-field. Since traditional CFD schemes tend to have

dissipation and dispersion properties that damp out acoustic oscilla, tions, different methods

are applied here. These methods have high orders of accuracy, and often employ .grid

refinement strategies. Recent full CFD methods include the Dispersion Relation Preserving

(DRP) scheme of Tam and Webb, 9 and an upwind version of the leapfrog scheme due to
Thomas and Roe. I°

A major problem involved in this type of method is the need for a very fine _oTid

to resolve the acoustic fluctuations. Use of a fine grid in the mid- and far-fields will

lead to storage problems. Also, since the acoustic fluctuations are quite small, the use of

non-linear equations (Euler or Navier-Stokes) can result in errors, lI

3: CFD with £inearized EuIer Equations. In this method, a nonlinear near-field

CFD solution is coupled with a far-field solution determined from the linearized Euler

equations. This method requires the use of proper boundary conditions between the near-

and far-fields. In addition, far-field mesh spacing, diffusion, and dispersion errors must

be addressed. However, this method seems to have potential, due to the reduced storage

requirements as compared to a full CFD approach, or the acoustic analogy. Mankbadi, et

all2 have used this approach to determine the far-field sound due to a perfectly expanded

supersonic jet.

4. CFD-Kirchhoff Approach. This method (the Kirchhoff method) utilizes CFD

techniques to determine the nonlinear near-field. The far-field is determined from a linear

Kirchhoff formulation. The Kirchhoff formulation is defined on a control surface which

must enclose all sound sources. The full nonlinear flow equations are solved in the near-

and mid-fields through the use of a CFD application. A surface integral of the solution

variables over the control surface gives enough information to determine the sound at

any point in the far-field. This method provides for adequate matching between the

aerodynamic nonlinear near-field and the acoustic linear far-field.



One major advantage of this method is the need for only surface integrals. This

greatly reduces storage requirements. The method accounts for full diffraction and focusing

effects, as well as non-compactness. Additionally, nonlinear shock effects can be easily

accounted for. The Kirchhoff method has been used extensively for prediction of helicopter

and turbomachinery noise. 13 A review of the various uses of the Kirchhoff method in

aeroacoustics was presented by Lyrintzis. 14 In this study, the author will use the Kirchhoff

method to investigate the aeroacoustics of supersonic jets. Since the method can handle

shock associated noise, excellent results are expected for imperfectly expanded jets.

4. Derivation of the Kirchhoff Method

The time domain formulation of the Kirchhoff method is derived in this section. A

simple transformation is then used to create the frequency domain formulation. Addi-

tionally, the application of the Kirchhof method to supersonic jet aeroacoustics will be

discussed. For the sake of brevity, only the particular Kirchhoff formulations to be used

in the study will be derived.

To derive the Kirchhoff method for supersonic jet aeroacoustics, it is first assumed

that there is a (rigid) control surface S which encloses all aerodynamic nonlinearities and

sound sources in the flow field. A further assumption is made in that the free stream is

moving at a steady, subsonic velocity. Thus the surface S moves with this velocity, Uoo.

Outside S, the pressure perturbations are governed by a convective wave equation

U2p _- N + Uoo_x p=0 (4.1)

where p is the pressure, and a is the ambient speed of sound. This equation is solved in the

far field through the use of a Green's function approach for hyperbolic equations. After

some algebra, 1_ the pressure field can be expressed using surface integrals

8no ro cono arofl 2 cOt \ cOno r
So

where r0 is the distance between the observer and the source in Prandtl-Glauert coordi-

nates

To= [(x-- +9 (y-- + - (4.3)
The retarded time, r and time delay, td are given by

[T0- ._r_ (z - z,)]
T =t--td=t-- a32 (4.4)

(Subscript 0 denotes Prandtl-Glauert transformed variables, (x0, Y0, z0) = (x, fly, flz), and

= _1 - i_/I_.) Here, ff is the unit outward normal to the surface S, and subscript r

denotes evaluation at the retarded time.

With equation (4.2) it is possible to calculate the acoustic signature at any point

outside of S from the pressure and it's normal and time derivatives on the surface. These



quantities can be determined from theory, experiment, or computational methods. In this

study, a temporally and spatially accurate CFD code is used to determine the quantities.
The CFD codes utilized will be discussed in a later section.

Researchers in aeroacoustics are often concerned with dominant frequencies. That is,

they are interested with how a sound source varies with frequency as much as with time.

For this reason, a Fourier transform is often performed to obtain a power spectrum. A

recent development with the Kirchhoff method allows the researcher to work directly in

the frequency domain. This derivation is due to Lyrintzis, 14 although a similar expression

was derived by Davis and Atassi. 16

The derivation of the frequency domain Kirchhoff method is straightforward. In this

approach, the derivation begins with the Helmholtz equation, and the pressure is written
as

t)= e-'w'} (4.5)

This expression is then substituted into equation (4.2) to obtain

47r _o2_ + ^ "Ono .oOno a V5p O, o )
So

c ))dSo .

(4.6)

This formulation allows the user to perform a Fourier transform on the initial CFD data

before using the Kirchhoff method instead of after it's use. There may be advantages to

this sequence, in that there may be a smaller phase error associated with working in the

frequency domain.

To apply the Kirchhoff method to supersonic jet aeroacoustics the surface S is chosen

as a cylinder surrounding the flow. Proper placement of this cylinder is essential for

accurate predictions. The surface must enclose all nonlinearities in the flow. But, if it is

placed too far aw_- from the shear layer, _id stretching in the CFD program will lead

to errors in the derivatives. Additionally, it may be difficult, or impossible, to enclose all

nonlinearities in the axial direction. That is, the cylinder end surface might cut off noise

producing portions of the flow. The cylinder end can be moved far downstream to ensure

capturing of all nonlinearities, but then grid stretching and storage problems can occur. It

may also be possible to use the Kirchhoff method with an incompletely closed surface, i.e.

a cylinder with no end surface. Amplitude and phase errors caused by this omission have

been calculated for simple acoustic source flows and will be discussed in a later section.

5. CFD Codes

The CFD methods used to calculate the near-field flow properties for the Kirchhoff

method must have a high order of accuracy in both space and time in order to resolve

the small amplitude acoustic fluctuations. A turbulence model is also necessary to include

the effects that small scale turbulence has on the noise generation mechanisms. In this

5



section, proposed modifications to an existing CAA (computational aeroacoustics)code
will be discussed.

As mentioned in a previous section, the large scalevortical structures account for
most of the noise generation in supersonicjets. Becauseof this, it may be effective to
resolvethese large scalesdirectly in the CFD calculations,and to model the smaller scale
turbulence. This type of modefingis effectivelyaccomplishedwith a large eddy simulation
(LES) method. In LES methods eddiesor vortical structures smaller than a filter width
(grid cell size) are modeled using an eddy viscosity. One computational method that
employsthis schemein solving the Navier-Stokesequationshasbeenutilized by Mankbadi
et. al.7 This method, and someproposedmodifications,areoutlined below.

The computational method in consideration is referred to as a 2-4 MacCormack
method, indicating secondorder accuracy in time, and fourth order accuracy in space.
Currently, it is usedto solvethe filtered, axisymmetric Navier-Stokesequations

OU OF 1 0 (rG)
+ -w (5.1)

where U is the vector of unknowns and W is the source vector,

U (0)W=I_ 0
r P - _'oo

0

F and G are the fluxes in the axial and radial directions

F = _fi2 G =
p'UV -- rzr

+ a - - -

m_

An overbar denotes a filtered quantity, and a tilde denotes Favre avera_ng.

and rid are the viscous shear stresses. The stresses are split as r = Vv + rt where subscript

v denotes the viscous part and subscript t denotes the turbulent portion that needs to be

modeled.

When performing an LES computation the governing equations axe filtered for a cer-

tain length scale, resulting in residual turbulent stresses. Currently, $magorinski's 17 model

is used to resolve these stresses.

1 2

vti,j = "_qRc_i,j -- 2pvR Ri,j
(5.2)
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where qR is the energy of the residual turbulence. This term is incorporated into the

thermodynamic pressure term and can be neglected. Ri,j is the strain rate of the resolved
scales.

Ri,j = _ \ Oxj + Oz, ] (5.3)

and UR is the effective viscosity of the residual field. Currently, the following definition is
used for vR

uR = (C_A) _ (2Rm,,,R,,,,n) ½ (.5.4)
1

where A is the filter width, A = (Ax • Ar) _ and Cs is 0.23. It is possible that Smagorinski's

model may not be the most appropriate for the aeroacoustic applications discussed here. If

possible, a better model will be determined, or Cs may be determined dynamically based
on flow variables.

As mentioned earlier, 2-4 accuracy is maintained in the code. This accuracy is achieved

through an operator splitting, i.e.

U n+2 = L_L,.L,.L_U n (5.5)

where L_ and Lr axe the one dimensional differential operators in the x and r directions.

Superscripts n and n + 2 refer to the current time level and the solution after temporal

advancement. The full differential operators are listed in the appendix.

The LES method defined above works well for the calculation of perfectly expanded

jets, and has been used in conjunction with a Kirchhoff method to predict fax field sound, is

But, due to the nature of the discretizations, it cannot calculate jet flows which contain

shock waves. Thus, in order to predict imperfectly expanded jet flows, the differential

operators need to be modified. The operators must be modified in such a way as to capture

the shock waves while maintaining high order spatial and temporal accuracy. Additionally,

the code should be extended to handle full three dimensional flows so that predictions can

be performed on the 3D directivity inherent in supersonic jets (e.g. helical and flapping

modes). The proposed modifications axe outlined below.

Several types of high order shock capturing computational methods have been de-

veloped recently. 19 These include the total variation diminishing (TVD) and essentially

non-oscillatory (ENO) schemes. While TVD schemes capture shock waves effectively,

they necessarily degenerate to first order accuracy in doing so. This leaves TVD schemes

unacceptable for aeroacoustics applications. ENO methods 2° use an adaptive, nonlinear

computational stencil to avoid this problem. In this study, the ENO scheme of Atkins 21

will be applied to the conservation equations outlined above, while maintaining the LES

turbulence modeling. Temporal accuracy will be maintained, or increased, through the use

of the TVD-Runge--Kutta schemes of Shu. 22 A brief description of the ENO modifications
follows.

In the ENO method, the goal is to approximate oF oa_-, or _ to high order of accuracy,

Of that is said to be N *heven in the presence of discontinuities. An approximation to _-
order accurate is

0--7 = + o (5.6)



(An overbar now denotes a numerical approximation.) F cam be defined generically in

terms of F and it's derivatives by a Taylor series expansion

If (5.6) is enforced, and -F(F(w),...F(w),...F(w)) = F(w) then the coefficients aT,

of (5.7) can be uniquely determined. A further approximation can now be made in that

F(xi) is approximated by a M th order polynomial, @_}1(x,F) through M + 1 points in

the neighborhood of i. Thus,

:" on, M(z,F) (58)
"-ffi ( x ) = _ a,_ A x n cOxn

n=0

which, when differenced, approximates the derivative via

To eliminate the Gibb's phenomena found with most high order methods, qM is

not necessarily centered on point i. A search algorithm is used to determine the M + 1

"smoothest" points in the neighborhood of i. if2 then gives a smooth approximation _o F,
OF

and thus _ can be approximated without spurious oscillations, even at the discontinuity.

The ENO method described above has been evaluated for aeroacoustic applications

(without LES modeling) by Casper and Meadows 23 with favorable results. They used high

order accurate boundary conditions due to Atkins and Casper. 2_ Using these boundary

conditions may help improve the predictions in the current study as well.

6. Preliminary Results
Several factors must be evaluated before the CFD-Kirchhoff method can be utilized

in the study of jet aeroacoustics. Lyrintzis and Mankbadi is investigated the effect of CFD

grid (spatial) and temporal discretizations on the accuracy of the method. They found that

it is relatively easy to obtain a suitable number of spatial points per acoustic wavelength

or temporal points per acoustic period with existing CFD codes.

It is necessary to show that the Kirchhoff method can indeed accurately calculate an

acoustic field. To this end, the Kirchhoff method has been used to calculate the acoustic

fields, at an instant in time, produced by simple acoustic sources. Since the simple sources

have analytical solutions, a direct comparison can be made.

Figure la shows the pressure contours for a point acoustic source (monopole) in a

stagnant medium. Figure lb shows the same field, except that there is a uniform velocity

of Mach number 0.5 in the x direction. The analytical expression for pressure due to an

acoustic source with unit amplitude is

1 sin[os(t ro+M_c(xs-x))] (6.1)Ps (x) = ro a3 2

8
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where 7 = (,r,:l.") is the observer l_>cation,and 7.,

Lion.
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Subscript 0 denotes tlransfornlation t() the Prandtl-Glauert coordinates, as t)ct'ore.
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Figure la. Pressure COlltours for a point
acoustic source. _,I_. = 0.0

Figure lb. Pr(-ssure contours fi.)r a point
acoustic source. 3Ix. = 0.5

In figures 1 the acoustic source is placed at (25,0,0). The upper half of the fig-

ures shows the solution obtained with the Kirchhoff method, while the lower half shows

the mlalytical solution obtained fl'om (6.1). The cylindrical control surface, S, is la-

beled. The contours fl'om the Kirchhoff and analytical solutions are nearly identical on

both plots. One exception is the interior of the Kirchhoff surface, where the amplitude

should be identically zero. Tlie plots show an acceptable, small amplitude in this area.
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Figure 2a. Pz'_-ssm'e contours fi)r a l)_fint
acoustic dip()lc. ®,_ = 0°.3I_. = 0.0

Figure 21). Presstu'e contours fi)r a point
acoustic dipole. ("),t = 0 °,:lIx = 0.5

Since tlwr_, is a. gr,'at deal of diwctivity in supersonic j(,rs, it, is also usefld to use the



is the divergenceof monopoleradiation, i.e.

Pd(_) = V.p, (_) k (6.2)

where _: is the unit vector which points along the axis of the dipole. Thus, there is maximum

radiation in the direction of _:, and no radiation normal to k (for a stagnant free stream).

For the radiation in figures 2, _: is chosen to be (1, 0, 0) to maintain symmetry about the ×

axis. From the figures it can be seen that the Kirchhoff method reproduces the contours

quite well, including the inherent directivity. The pressure amplitude within the Kirchhoff
surface is again nearly zero.

It may be difficult to enclose all nonlinear noise producing portions of the flow field

when calculating the acoustic signatures of jets. That is, the nonlinear region may extend

many jet diameters downstream of the jet orifice. Enclosing this entire 3D flow field can

lead to storage problems. It may, however, be sufficient to use the Kirchhoff method on

a portion of the flow field instead. If this is the case, the cyhnder ends of the Kirchhoff

surface are ignored. Ignoring these portions of the control surface will lead to errors in the

amplitude and phase of the observed far-field acoustic signature, but they may be small
enough to allow for an acceptable prediction.

Calculations of simple acoustic sources were again used to determine if the ends of

the control surface can be ignored. Figures 3 show contours of the percentage amplitude

and phase errors in the region downstream of a cylindrical control surface of length 50

and radius 4. For these calculations, a point acoustic source was placed at (25, 0). The
percentage RMS amplitude error was calculated with

RMS (pair) - RMS (pat,)
EA = 100

RMS (P.ct)

while the percentage phase error was calculated with

Ep = lo0(tkir -- tact)
T

where T is the period of the oscillations.

$0.0 100.0 150,0 200.0 2£=0.0 3_0.0 3500 4(XI,O 450.0 :3000 SO,O 1000 1S0.0 ZO0.O 2S0.0 3000 350 0 40QO 450.0 500.0

Figure 3a. Percentage amplitude error contours Figure 3b. Percentage phase error contours
for a point acoustic source, dV[_ -- 0.0 for a point acoustic source. M_ -- 0.0
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Figures 3 show that there is 5 to 30 percent error in amplitude in ar_ area between

10 ° and 45 ° from the end of the cylinder. The highest amplitude error is in the region

around O = 30 °, where 0 is the angle measured from the positive z axis. The phase error

is between one and ten percent (except near the cylinder base), and is in the same region

as the amplitude error. The peak phase error occurs near the x axis. Similar error plots

were obtained for radiation from dipoles of various orientations.

It would be desirable to determine a region where the Kirchhoff solution would be

acceptable, even without the complete control surface. The errors in figures 3 axe still

too high to give an acceptable acoustic prediction. Thus, it is necessary to continue

the calculations into the far-field to determine if the errors fall below acceptable levels.

,,n

10.z

10 ° .....

I _ Wttt_Out B_es
Wlth Bases

10"

_0"

10"
_o' _0_
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Figure 4a. Amplitude Error with distance at
@ = 0 °. Point acoustic source.

10" " _ -- _ 8asa
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Figure 4b. Phase Error with distance at
@ = 0 °. Point acoustic source.
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Figure 4c. Amplitude Error with distance at
O -- 30 °. _d = 30 ° acoustic dipole.
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"---""--"-- W, tl'm_ Bases
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.... p

10' Io'

Figure 4d. Phase Error with distance at
@ = 30 °. Cd = 30 ° acoustic dipole.

The calculations have been extended to r0 -- 1000 jet diameters for acoustic sources

and dipoles at angles O --- 0 ° and O -- 30 °. The results are shown in figures 4. Also

included for comparison are the errors calculated when the base surfaces are used. From

figures 4 it is evident that the phase and amplitude errors do not drop appreciably as

the computations are extended to the far-field. Omission of the base surfaces may be
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permissible if a five percent error is acceptable, or for preliminary studies. But, it is

apparent that some other form of modeling is necessary for the base of the cylindrical

Kirchhoff surface. Hopefully, the CFD solution can be extended to an area where there

axe few nonlinearities in the flow. Then, the base surface effects can be calculated directly.

If this cannot be done, some other form of modeling will be necessary. The frequency

domain formulation may hold some promise for this modeling. The current project will

determine what, if anything, is needed in this regard.

The Kirchhoff method has also been used in preliminary jet acoustics calculations.

The LES code discussed in section 5 was used to find the pressure and pressure derivatives

due to a Mach 1.5 jet in a stagnant medium. The Kirchhoff surface was a cylinder with no

bases extending 50 jet diameters downstream. The radius of the cylinder varied from one

to five jet diameters. The Jet was excited at a frequency such that the Strouhal number,

wL/U, was 0.125. 150 points were used along the length of the surface, and 956 temporal

points per period of excitation were used. The results of the calculations are shown in

figures 5. Figure 5a shows the variance of the RMS pressure amplitude with distance for

an emission angle of 60 ° measured from the x axis. Also shown is line denoting a 1/ro rela-

tionship. It can be seen that the amplitudes follow the 1/ro relationship fairly closely. The

effects of grid stretching in the CFD calculation can be seen in the plot for rk = 5 diame-

ters. Here the pressure and derivatives are not as accurate which leads to the disagreement

with the predictions due to rk = 2, 3, 4. When rk is equal to one diameter the surface does

not enclose enough of the noise producing portions of the flow. Thus, a Kirchhoff sur-

face of radius from two to four jet diameters is desirable for the acoustics calculations.
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Figure 5a. RMS Pressure Amplitude with
dista_ace at 0 = 60 °. ._I_ = 1.5 Jet.
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Figure 5b. RMS Pressure Amplitude with
angle at r0 = 75.0. Mo_ = 1.5 Jet.

Figure 5b shows the variance of the RMS pressure amplitude with emission angle for

a distance of 75 jet diameters. The emitted sound is located mainly within 30 ° of the jet

axis. This is as expected. Again, the acceptable data is obtained with a Kirchhoff surface

of radius two to four jet diameters.

7. Proposed Investigations

Upon the completion of preliminary investigations to determine errors and the validity

of the Kirchhoff method, several proposed investigations will be undertaken. The main

12



focus of these investigations will be to determine dominant frequenciesand intensities of
different types of supersonicjet noise. Additionally, factors suchas directivity and noise
production mechanismswill be investigated. If possible,noisereduction techniqueswill be
identified.

Initially, the Kirch.hoffmethod is being be used to calculate the noise produced by
perfectly expanded,axisymmetric jets. This study will be used to determine the effect of
the LES turbulence modeling and the placement of the control surface. Results obtained

through the use of the Kirchhoff method will be compared with those obtained by others

through the use of experiments, acoustic analogy, and computations of the linearized Euler

equations. Favorable comparisons are expected.

Predictions of imperfectly expanded jets will begin after the initial calculations are

completed. The researcher will be investigating primarily the noise associated with shock

waves in the jet flow. Screech tones can cause structural damage to aircraft, so this area of

research is quite important. Additionally, the production of noise in shock wave-turbulence

interactions and shock-vortex interactions will be investigated. These calculations will be

performed with a fully three dimensional prediction method. Three dimensional directivity

in supersonic jets has not yet been adequately investigated.

8. Conclusions

The Kirchhoff method is a powerful tool for aeroacoustics research. When used in

conjunction with accurate CFD codes it allows for efficient, accurate calculation of far-

field acoustic signatures. Nonlinearities and three dimensional effects are easily handled

by the method. These properties make the Kirchhoff method an ideal choice for the study

of supersonic jets. Excellent predictions are expected for a wide range of aeroacoustics

problems.
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11. Appendix

The method to advance U at time level n to level n + 2 with the 2-4 MacCormack
method is shown below.

ui"__ =u,,j+

U_+ I = I { .+½ U" At

(11.1)

°+}+ AtWi, j ½ (11.2)

U-+2
i,j =5 i,j +-i,_ +

+ ntw,,'_+__ (11.4)
)

and

At n
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